Long-term Entecavir Therapy Results in Reversal of Fibrosis/Cirrhosis and Continued Histologic Improvement in Patients with HBeAg(+) and (-) Chronic Hepatitis B: Results from Studies ETV-022, -027 and -901

Yun-Fan Liaw¹, Ting-Tsung Chang², Shun-Sheng Wu³, Eugene R. Schiff⁴, Kwang-Hyub Han⁵, Ching-Lung Lai⁶, Rifaat Safadi⁷, Samuel S. Lee⁸, Waldemar Halota⁹, Zachary D. Goodman¹⁰, Hui Zhang¹¹, Robert Hindes¹¹, Uchenna Iloeje¹¹, Suzanne Beebe¹¹, Bruce Kreter¹²

¹Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan; ¹University of Miami Hospital & Clinics, Miami, FL, USA; ⁵Department of Internal Medicine, Yonsei University College of Medicine, Taiwan; ⁴University of Miami Hospital & Clinics, Miami, FL, USA; ⁵Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea; Department of Medicine, Queen Mary's Hospital, University of Hong Kong, China; Shinika Chorob Zakaznych AM, Bydgoszcz, Poland; China; Chi ¹¹Research & Development, Bristol-Myers Squibb Company, Wallingford, CT, USA; ¹²Research & Development, Bristol-Myers Squibb Company, Princeton, NJ, USA

Introduction

- Elevated baseline HBV DNA has been demonstrated to be a significant factor in the development of cirrhosis and hepatocellular carcinoma¹⁻³
- HBV DNA suppression with antiviral therapy can significantly improve liver histology in HBeAg(+) patients⁴
- Entecavir (ETV) 0.5 mg daily demonstrated superior histologic, virologic and biochemical activity compared to lamivudine (LVD) 100 mg daily in nucleoside-naïve HBeAg(+) and HBeAg(-) patients with chronic hepatitis B (studies ETV-022 and ETV-027)^{5,6}
- We present long-term histologic results for a subset of patients treated with ETV for a median of 280 weeks

Methods

Study population

• The Long-term Histology Cohort (n=69) is a subset of the ETV-901 study population

> It consists of nucleoside-naïve HBeAg(+) and HBeAg(-) patients treated with ETV in studies ETV-022 or ETV-027 who:

- had a liver biopsy in study ETV-901 and
- received a minimum of 3 years of cumulative ETV therapy from Phase 3 baseline to the time of their last observed biopsy in study ETV-901
- Patients received ETV 0.5 mg once daily in studies ETV-022 and -027
- All patients received ETV 1.0 mg in study ETV-901
 - Initially, due to ongoing blinding of Phase 2-3 studies, patients enrolling into study ETV-901 may have received a brief period of combination ETV 1.0 mg and LVD 100 mg daily

Efficacy Evaluable Cohort

- The Efficacy Evaluable Cohort (n=57) consists of patients who had:
- an adequate Phase 3 baseline biopsy
- a baseline Knodell necroinflammatory score of ≥ 2
- an adequate long-term biopsy sample in study ETV-901

Analysis endpoints: liver histology

- Co-primary endpoints
 - Histologic improvement (≥2-point decrease in Knodell necroinflammatory score and no worsening of Knodell fibrosis score) compared to baseline
- Improvement in Ishak fibrosis score (≥1-point decrease) compared with baseline
- Other histologic endpoints
- Change from baseline in Knodell necroinflammatory score
- Change from baseline in Ishak fibrosis score
- Proportion of patients with baseline advanced fibrosis/cirrhosis (Ishak score ≥4) who demonstrated Ishak score improvement
- Proportion of subjects with baseline histologic activity index (HAI) score of ≥ 4 who achieved a Knodell HAI score ≤ 3

Analysis endpoints: virologic, biochemical, serologic and safety

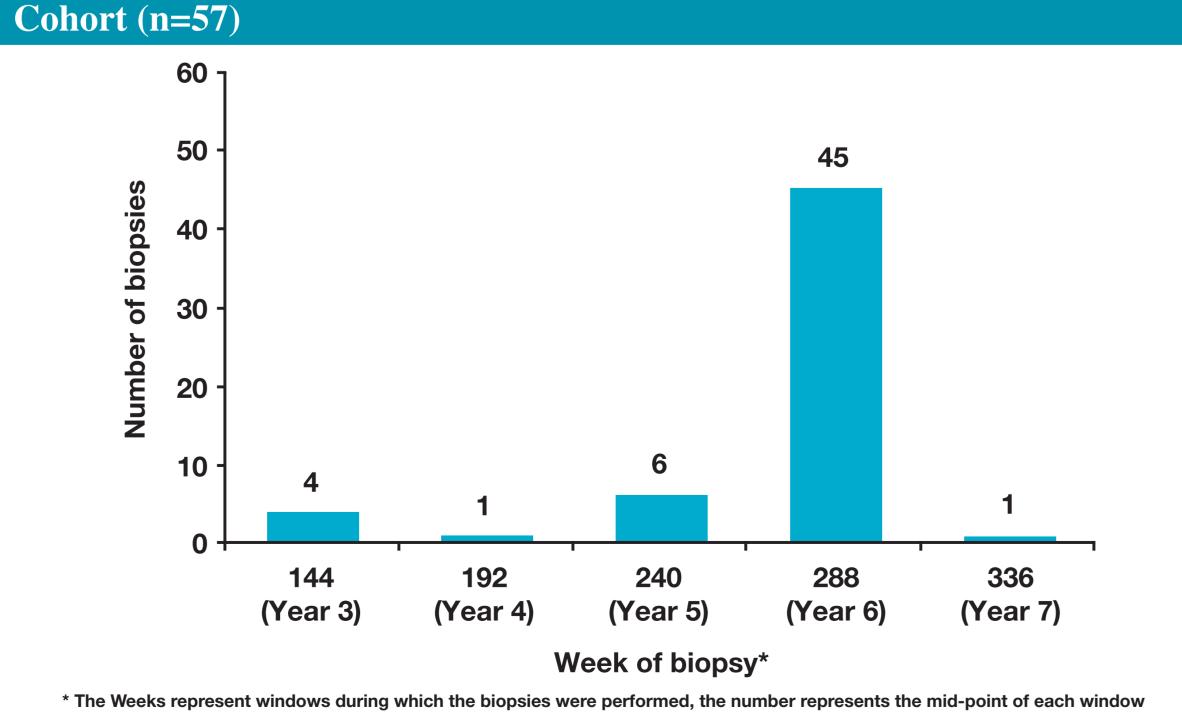
- All efficacy analyses were conducted on samples that matched the time of long-term biopsy (±12 weeks) and compared with Phase 3 baseline
- Proportions of patients with HBV DNA <300 copies/mL by PCR, alanine aminotransferase (ALT) ≤1 x ULN, HBeAg loss, HBe seroconversion and HBsAg loss were assessed among patients with available samples (Non-completer=Missing)
- Safety was evaluated from entry in study ETV-901 to date of database lock (28 April 2008)

Results

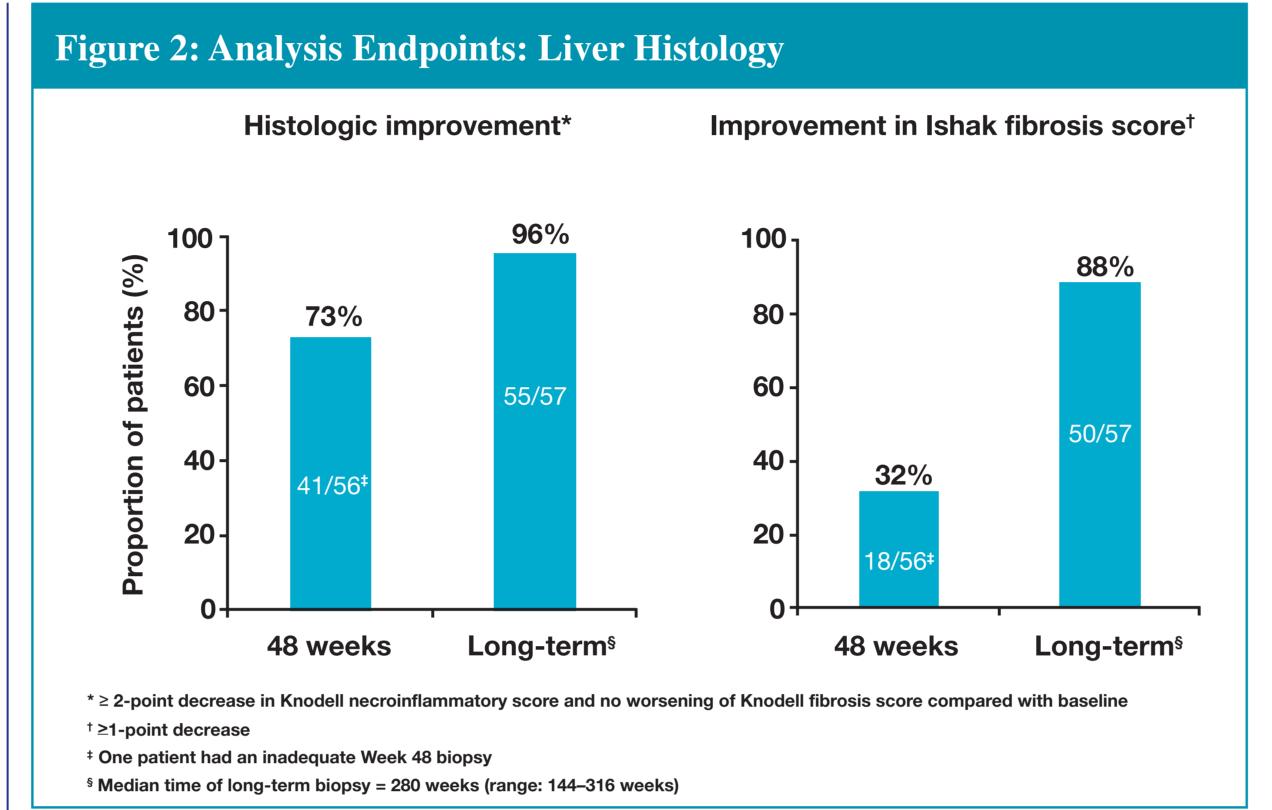
Table 1: Demographics and Baseline Characteristics of Patients in Phase 3 Studies Compared with Efficacy Evaluable Cohort (ETV-901)

	ETV-022 Cohort (n=354)	ETV-027 Cohort (n=325)	Efficacy Evaluable Cohort (n=57)
Age, mean (years)	35	44	40
Male (%)	77	76	82
Race:			
Asian (%)	58	38	67
Non-Asian (%)	42	62	33
HBeAg(+) (%)	98	1	72
HBV DNA by PCR, mean (log ₁₀ copies/mL)	9.62	7.60	9.40
ALT, mean (U/L)	140	141	142
HBV genotype (%) A B C D Other	13 10 27 31 19	10 10 14 18	12 18 13 27 33

Demographics and baseline characteristics of the Efficacy Evaluable Cohort were generally comparable to those of all treated patients in studies ETV-022 and -027, with the exception of the higher proportion of Asians in the Efficacy Evaluable Cohort


Table 2: Comparison of Results Between Efficacy Evaluable Cohort and ETV-022 and ETV-027 at Week 48

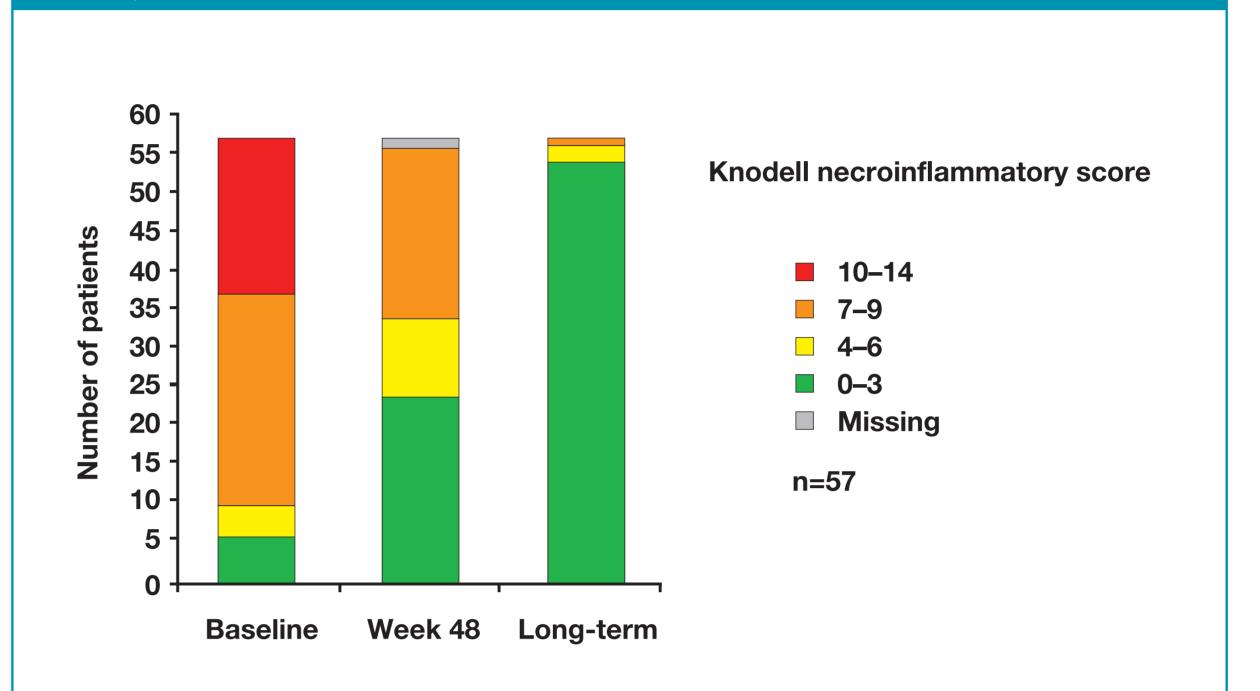
	HBeAg(+) patients		HBeAg(-) patients	
	Efficacy Evaluable Cohort (n=41)	ETV-022 (n=354)	Efficacy Evaluable Cohort (n=16)	ETV-027 (n=325)
HBV DNA <300 copies/mL, n (%)	25 (61)	236 (67)	15 (94)	293 (90)
ALT <1 x ULN, n (%)	26 (63)	242 (68)	12 (75)	253 (78)
Histologic improvement,* n (%)	31 (76)	226 (77) [†]	10 (67)‡	202 (78)§
Improvement in Ishak fibrosis score, n (%)±	15 (37)	121 (41) [†]	3 (20)‡	107 (40)§
* >2-point decrease in Knodell HAI score and no worsening of Knodell fibrosis score compared with baseline				


† A total of 292 patients had adequate paired biopsy samples ‡ One patient had an inadequate Week 48 biopsy

§ A total of 265 patients had adequate paired biopsy samples ± ≥1-point decrease in Ishak fibrosis score

Figure 1: Distribution of Biopsies Included in the Efficacy Evaluable

• Median time on treatment at the time of long-term biopsy was 280 weeks


Following 48 Weeks of ETV treatment the majority (73%) of patients achieved histologic improvement

The proportion of patients who achieved histologic improvement increased to 96% following long-term treatment

Improvement in Ishak Fibrosis score was observed in 32% of patients following 48 Weeks of ETV treatment

This increased to 88% following long-term treatment

Figure 3: Distribution of Knodell Necroinflammatory Scores at Baseline, Year 1, and Years 3–7

	Week 48	Long-term*
Mean change from baseline in Knodell necroinflammatory score	-3.39	-6.37
Knodell HAI <3 in patients with baseline HAI ≥4, n (%) [†]	12/54 (22)‡	41/55 (75)

Efficacy Evaluable Cohort (n=57)

Median time of long-term biopsy: 280 weeks (range: 144–316 weeks); † Fifty-five patients had baseline Knodell HAI score ‡ One patient had an inadequate Week 48 biopsy

Figure 4: Distribution of Ishak Fibrosis Scores at Baseline, Year 1, and Years 3–7

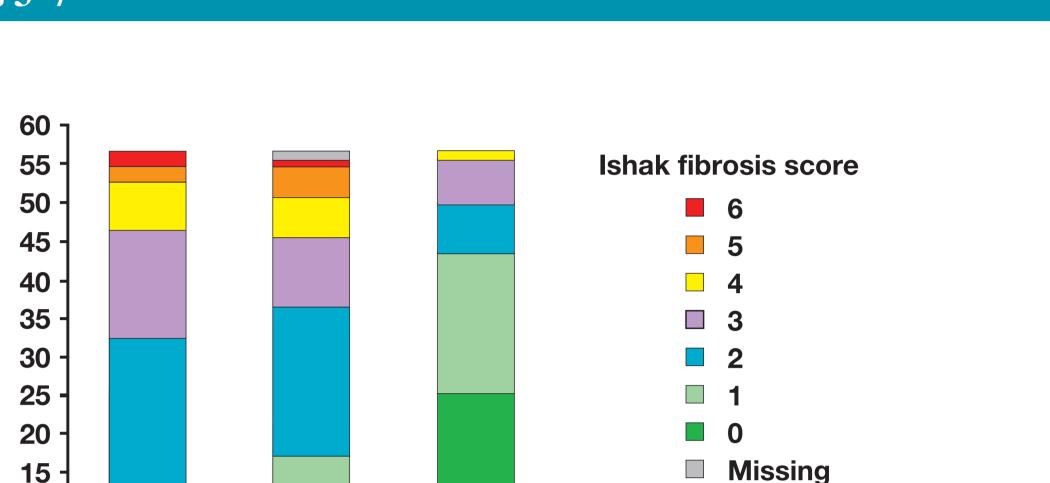


Table 4: Change in Ishak Fibrosis Score from Baseline

Week 48 Long-term

	Efficacy Evaluable	Cohort (n=57)
	Week 48	Long-term*
Mean change from baseline in Ishak fibrosis score	-0.20	-1.53
≥2-point decrease in Ishak fibrosis score, n (%)†	3/42 (7)‡	25/43 (58)

* Median time of long-term biopsy: 280 weeks (range: 144–316 weeks); † Forty-three patients had baseline Ishak fibrosis score ≥2 ‡ One patient had an inadequate Week 48 biopsy

Table 5: Analysis Endpoints: Virologic, Biochemical and Serologic

	Efficacy Evaluable Cohort (n=57)	
	Week 48	Long-term*
HBV DNA <300 copies/mL, n (%)	40/57 (70)	57/57 (100)
ALT ≤1 x ULN, n (%)	38/57 (67)	49/57 (86)
HBeAg loss, n (%) [†]	1/41 (2)	22/40 (55)‡
HBe seroconversion, n (%)†	1/41 (2)	13/40 (33)‡

* Median time of long-term biopsy: 280 weeks (range: 144–316 weeks) † Only HBeAg(+) patients (n=41)

‡ One patient with missing serology in long-term window

- All patients achieved undetectable HBV DNA (<300 copies/mL) at the time of long-term biopsy
- Increasing proportions of patients achieved ALT normalization (ALT <1 x ULN) with long-term ETV treatment
- Patient management criteria in ETV-022 mandated that patients with HBeAg loss and HBV DNA < 0.7 MEq/mL discontinue study therapy and be followed off-treatment. Most patients who achieved HBeAg loss in ETV-022 were therefore not included in the Long-term Histology Cohort
- No patients in the Evaluable Efficacy Cohort lost HBsAg

Table 6: Cumulative Safety of Patients in the Long-term Histology Cohor **During Treatment in ETV-901 (n=69)***

	n (%)
Any adverse event	66 (96) [†]
Grade 3–4 adverse events	14 (20)
Serious adverse events	17 (25)
Discontinuation due to adverse event	0 (0)
All deaths	1 (1)‡
On-treatment ALT flares [±]	2 (3)

* Safety was evaluated from entry in Study ETV-901 to date of data base lock (04/28/08); † Most common adverse events, occurring i ≥10% of patients: upper respiratory tract infection (23%), headache (16%), nasopharyngitis (16%), ALT increase (14%), abdominal pair (13%), influenza (13%), back pain (12%), pyrexia (12%), arthralgia (10%), cough (10%), hypertension (10%), insomnia (10%) and pharyngolaryngeal pain (10%); ‡ One death occurred due to myocardial ischemia and was not attributed to study medication \pm ALT flare = ALT > 2 x baseline ALT and > 10 x ULN

Reversal of advanced fibrosis/cirrhosis

- Ten patients had baseline advanced fibrosis/cirrhosis (Ishak fibrosis score = 4, 5 or 6
 - All demonstrated an improvement in Ishak fibrosis score (≥1-point improvement)
 - Four patients had a liver biopsy with cirrhosis at baseline; all demonstrated an improvement of Ishak fibrosis score
 - The median change in Ishak fibrosis score was a 3-point
 - decrease (range: -1 to -4)

Summary of Results

- Ninety-six percent of patients in the Long-term Histology Cohort who received continuous treatment with ETV achieved histologic improvement
- All patients with advanced fibrosis/cirrhosis at baseline (Ishak fibrosis score ≥4) demonstrated an improvement in fibrosis
- At the time of long-term biopsy:
- all patients had HBV DNA <300 copies/mL eighty-six percent of patients had ALT <1 x ULN
- Week 48 results for the Efficacy Evaluable Cohort were comparable to the respective Phase 3 parent studies (ETV-022 and ETV-027)
- Safety profile was consistent with previously reported experience

Conclusion

• The results from this cohort demonstrate that long-term ETV treatment result in durable suppression of viral replication and regression of fibrosis/cirrhosis

References

[1] Chen CJ, Yang HI, Su J, et al. JAMA 2006;295:65-73. [2] Iloeje UH, Yang HI, Su J, et al. Gastroenterology 2006;130:678-686 [3] Chen G, Lin W Shen F, et al. Am J Gastroenterol 2006;101:1797-1803 [4] Mommeja-Marin H, Mondou E, Blum MR, et al. Hepatology 2003;37:1309-1319 [5] Chang TT, Gish RG, de Man R, et al. N Engl J Med 2006;354:1001-1010 [6] Lai CL, Shouval D, Lok AS et al.. N Engl J Med 2006;354:1011-1020 **Disclosures**

Yun-Fan Liaw - Grant/Research Support: Bristol-Myers Squibb, Novartis, Roche, SciClone, Gilead Sciences; Consultant/Advisor: Bristol-Myers Squibb, GlaxoSmithKline, Novartis, Roche, and SciClone. Ting-Tsung Chang – Grant/Research Support: Bristol-Myers Squibb, Gilead Sciences, GlaxoSmithKline Schering-Plough Corporation and Pfizer Inc. Eugene R Schiff: Consultant/Advisor: Dynavax Technologies Corporation; Scientific Advisory Board: Abbott, Anadys Pharmaceuticals, Bayer, Bristol-Myers Squibb, Conatus, Gilead Sciences, GlobeImmune, Inc., Merck, Novartis/Idenix, Pfizer, Roche Molecular, Schering-Plough Corporation and Vertex Pharmaceuticals; Data Monitoring Board: Daiichi-Sankyo. Johnson and Johnson, Pfizer, Salix Pharmaceuticals, Inc., Sanofi Aventis and Wyeth; Grant/Research Support: Abbott, BeringerIngelheim, Bristol-Myers Squibb, Conatus, Debio Pharm, Gilead Sciences, GlobeImmune, Inc., Idenix, LABCORE, Merck, Novartis/Idenix, Pfizer, Roche Diagnostics, Roche Molecular, Roche Pharmaceuticals, Salix Pharmaceuticals, Inc., Sanofi Aventis, Schering-Plough Corporation, Vertex Pharmaceuticals and Wyeth; Speakers Bureau: Gilead Sciences and Schering-Plough Corporation. Ching-Lung Lai - Consultant/Adviser: Bristol-Myers Squibb. Samuel S Lee - Consultant/Advisor: Roche, Genentech, Gilead Sciences Novartis; Grant/Research Support: Bristol-Myers Squibb, Bayer, Novartis, Genentech, Roche, Schering-Plough Corporation, Gilead Sciences, Virochem; Speakers bureau: Bristol-Myers Squibb, Gilead Sciences, Roche. Zachary D Goodman – Grant/Research Support: Bristol-Myers Squibb, Gilead Sciences, GlaxoSmithKline, Schering-Plough Corporation, Novartis and Pharmasset. Hui Zhang, Robert Hindes, Uchenna Iloeje, Suzanne Beebe and Bruce Kreter Bristol-Myers Squibb employees. The following people have nothing to disclose: Shun-Sheng Wu, Kwang-Hyub Han, Rifaat Sifadi, Waldemar Halota.

